Markedly Enhanced Surface Hydroxyl Groups of TiO2 Nanoparticles with Superior Water-Dispersibility for Photocatalysis

نویسندگان

  • Chung-Yi Wu
  • Kuan-Ju Tu
  • Jin-Pei Deng
  • Yu-Shiu Lo
  • Chien-Hou Wu
چکیده

The benefits of increasing the number of surface hydroxyls on TiO₂ nanoparticles (NPs) are known for environmental and energy applications; however, the roles of the hydroxyl groups have not been characterized and distinguished. Herein, TiO₂ NPs with abundant surface hydroxyl groups were prepared using commercial titanium dioxide (ST-01) powder pretreated with alkaline hydrogen peroxide. Through this simple treatment, the pure anatase phase was retained with an average crystallite size of 5 nm and the surface hydroxyl group density was enhanced to 12.0 OH/nm², estimated by thermogravimetric analysis, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy. Especially, this treatment increased the amounts of terminal hydroxyls five- to six-fold, which could raise the isoelectric point and the positive charges on the TiO₂ surface in water. The photocatalytic efficiency of the obtained TiO₂ NPs was investigated by the photodegradation of sulforhodamine B under visible light irradiation as a function of TiO₂ content, pH of solution, and initial dye concentration. The high surface hydroxyl group density of TiO₂ NPs can not only enhance water-dispersibility but also promote dye sensitization by generating more hydroxyl radicals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The application of titanium dioxide (TiO2) nanoparticles in the photo-thermal therapy of melanoma cancer model

Objective(s): Photo-thermal therapy (PTT) is a therapeutic method in which photon energy is converted into heat to induce hyperthermia in malignant tumor cells. In this method, energy conversion is performed by nanoparticles (NPs) to enhance induced heat efficacy. The low-cytotoxicity and high optical absorbance of NPs used in this technique are very important. In the present study, titanium di...

متن کامل

Enhanced photocatalytic performances of CeO2/TiO2 nanobelt heterostructures.

CeO2 /TiO2 nanobelt heterostructures are synthesized via a cost-effective hydrothermal method. The as-prepared nanocomposites consist of CeO2 nanoparticles assembled on the rough surface of TiO2 nanobelts. In comparison with P25 TiO2 colloids, surface-coarsened TiO2 nanobelts, and CeO2 nanoparticles, the CeO2 /TiO2 nanobelt heterostructures exhibit a markedly enhanced photocatalytic activity in...

متن کامل

Oxygen reduction catalyzed by Au-TiO2 nanocomposites in alkaline media.

Au-TiO2 nanocomposites were prepared by chemical deposition of gold nanoparticles onto TiO2 nanocolloids that were synthesized by a hydrothermal method. Transmission electron microscopic measurements showed that the TiO2 colloids exhibited an average diameter of about 5 nm and clearly defined lattice fringes that were consistent with those of anatase TiO2 and formed rather large agglomerates th...

متن کامل

Enhanced photocatalytic performance of TiO2-ZnO hybrid nanostructures

We studied the photocatalytic properties of rational designed TiO2-ZnO hybrid nanostructures, which were fabricated by the site-specific deposition of amorphous TiO2 on the tips of ZnO nanorods. Compared with the pure components of ZnO nanorods and amorphous TiO2 nanoparticles, these TiO2-ZnO hybrid nanostructures demonstrated a higher catalytic activity. The strong green emission quenching obs...

متن کامل

Structure of a model TiO2 photocatalytic interface.

The interaction of water with TiO2 is crucial to many of its practical applications, including photocatalytic water splitting. Following the first demonstration of this phenomenon 40 years ago there have been numerous studies of the rutile single-crystal TiO2(110) interface with water. This has provided an atomic-level understanding of the water-TiO2 interaction. However, nearly all of the prev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2017